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Abstract

This paper discusses basic issues in hydrological modelling and flood
forecasting, ranging from the roles of physically-based and data- driven
rainfall runoff models, to the concepts of predictive uncertainty and
equifinality and their implications. The evolution of a wide range of
hydrological catchment models employing the physically meaningful and
data-driven approaches introduces the need for objective test beds or
benchmarks to assess the merits of the different models in reconciling the
alternative approaches. In addition, the paper analyses uncertainty in models
and predictions by clarifying the meaning of uncertainty, by distinguishing
between parameter and predictive uncertainty and by demonstrating how the
concept of equifinality must be addressed by appropriate and robust
inference approaches. Finally, the importance of predictive uncertainty in
the decision making process is highlighted together with possible approaches
aimed at overcoming the diffidence of end-users.

Keywords: catchment models, physically-based models, data-driven input-

output models, equifinality, predictive uncertainty
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Introduction

The history of hydrological modelling ranges from the Rational Method
(Mulvany, 1850) to recent distributed

physically-meaningful models (Abbott et al., 1986a,b; Wigmosta et al.,
1994; Refsgaard and Storm, 1995; Ewen et al, 2000; Kouwen, 2000; De Roo et
al., 1998, 2000; Liu and Todini, 2002; Vivoni, 2003). Over the same period,
starting from the simple Unit Hydrograph (Sherman, 1932),

input-output models, now called data-driven models, have evolved into ANN
models (Garcia-Bartual, 2002) and Data Based Mechanistic (DBM) models
(Young, 2001, 2002). From the wide range of models available, the choice of
the one most appropriate for any specific task is difficult, particularly as
each modeller tends to promote the merits of his/her own approach.
Moreover, apart from the intercomparison of conceptual models conducted
in the seventies, (WMO, 1975), no objective comparisons using benchmarks, or

test beds using standard data sets, have been proposed or effected.
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Hydrological models serve many purposes, one of the most important
applications being flood forecasting in which uncertainty plays a major role.
Unfortunately, the implications of using uncertainty in the decision-making
process and even the concept of uncertainty seem to deter hydrologists from
addressing the problem. Indeed, many hydrologists do not appear to appreciate
the need to quantify predictive uncertainty and tend to describe the uncertainty
implicit in the model rather than in possible future values of the quantity to be
predicted or forecast, conditional upon the output of the model (Krzysztofowicz,
1999). To this confusion is added a lack of appreciation of the difference
between parameter uncertainty (and the possible need to estimate the
parameter values) and predictive uncertainty. Moreover, the introduction of the
‘equifinality’ principle (Beven and Binley, 1992) has not served to clarify
this distinction.. Hence, in delineating possible future lines of research, the

uncertainty problem must be viewed in the correct perspective.

Dl (o Gl o 5T 0,005 (0 pae 51 (Ko oS Wiy, oo 5 @ ilise Glaal 6l (Sojglypane sle Jos
Coaed poe 5l oolitial Coradl sy (oo Sl 4 cilinlie 05 o Lyl (gl odes (2 Carabad poe )] o a5 ol
Sk @ly p3 05 (oo 5L alts S 1) Lo ey felg e wialad pas porie (> 5 65 preal B8
P 05 e U ls hled 5 WS el 692 1) (Gl Sead pas gle (oS el Cenagly e
G g0 SaeS odl Jlasl polie 0 U anS Gy Joe 295 p borie Joe jo 1) Coebs
5 eyl polie oyl 4 Jloia Lo ) el )y Comlal pas o Dglls S0 pae (VAR S 99850 5,5) i
slR(VAAY (Lo g (9 Gbl oo ol (Byme odle 4 05h 00938 plool (nl 4 Wb 55 e Gl Coalad pue
i) Slidizs bk 5 Sl 9,5 sasio 13 59, ol 5l ol oot ooliiul Sslis ) g p45 5 (55l Blad

D9 Ay 0 azno Il i S Ll Coelad pas aliie

After a brief history of the development of hydrological models, this paper
proposes a reconciliation of the different approaches, by developing objective

benchmarks or test- beds relevant to the many diverse potential applications.



The problem of uncertainty in hydrological models is addressed as well as

possible approaches to describing a real-world case study.
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Brief history of hydrological models

FROM EMPIRICAL TO PHYSICALLY MEANINGFUL MODELS

The Rational Method proposed by Mulvany (1850) is a clear exposition of the
concept of time of concentration and its relation to the maximum runoff; it
estimates peak flow but not flood volume and is physically meaningful only in
small impervious catchments in which flow is effectively a purely kinematic
process. Applications of the method to the design of sewers appeared in the
literature from the end of the 19th century (Kuichling, 1889; Lloyd-Davies,
1906).
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The concept of the unit hydrograph (UH) (Sherman, 1932) was based on the
principle of superposition of effects; it enabled the complete flood hydrograph
to be predicted from rainfall sampled at constant intervals. With the introduction
of systems theory, the unit hydrograph was then interpreted as the response of a
linear, causative, dynamic stationary system and two forms of the unit
hydrograph were then considered. The first one, the continuous time
impulse response of a linear system, is known in hydrology as the

instantaneous unit hydrograph (IUH) and the second one, the response to a



time discretised input, is known as the finite period unit hydrograph (TUH)
(O’Donnell, 1966). Indeed, the introduction of the IUH can be viewed as the
starting point that led to the separation of physically meaningful and data
driven models. If the ‘shape’ of the IUH is defined a priori by the modeller as
the integral solution, a set of linear or linearised differential equations and the
parameter values are estimated not from the input- output historical data but
computed as a function of the physical characteristic quantities of the
phenomenon, then the IUH is a physical interpretation of the phenomenon.
Examples can be found easily in flood routing models. For instance, Kalinin and
Milyukov (1957) demonstrated that, by linearising the unsteady flow
equations, the integral solution is a Gamma density function, namely a
Nash cascade (1958, 1960) with parameters n and k, where the parameter n is
now extended to the domain of real numbers, which can be expressed in terms of
the Froude number, the bed slope, the velocity, etc. (Dooge, 1973).
Furthermore, Hayami (1951) showed how to derive an IUH from the linear
diffusion equation, while Todini and Bossi (1986) derived a TUH from the
linear parabolic approximation of the unsteady flow equations, with the two
parameters, celerity and diffusivity, which are recomputed at each integration
time interval in terms of the hydrodynamic characteristics of the reach

(discharge, the friction slope, etc.) .
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As well as difficulties of physical interpretation, the extension of the
IUH/TUH approach to larger, not necessarily impervious, catchments

presented problems requiring subjective choices, such as:

e Separtion of storm runoff from base flow;

e the determination of ‘effective’ rainfall, namely that portion of the rainfall
that is not lost through replenishing soil moisture etc;

e the actual derivation of the IUH/TUH shape and/or of the [IUH/TUH parmeters
from the measurements available.
To overcome these problems, research into non-linear or threshold-type systems
led to representations based on:
(i) Volterra integrals of an order greater than the first.
(i1) orthogonal polynomials (Amorocho and Orlob, 1961)
or
(iii) piecewise linearisations (Todini and Wallis, 1977,
Todini, 2002b), reproducing the consequences of threshold effects

introduced by soil saturation.
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To achieve a better physical interpretation of catchment response, the 1960s
saw the development of models in which individual components in the
hydrological cycle were represented by interconnected conceptual elements;
each of these represented, in the hydrological model, the response of a particular
subsystem: Dawdy and O’Donnell, 1965, Crawford and Linsley, 1966 —
Stanford Watershed IV; Burnash et al., 1973 — Sacramento; Rockwood, 1964
— SSARR; Sugawara, 1967, 1995 —Tank, etc. All these models represented in
different ways the responses of, and the interconnections between, the
various sub-systems; at the time, they were regarded as the very best that
could be achieved with the then current data and computational resources.
At that time the modellers strongly believed that the parameters of their
models, such as the storage coefficients, roughness coefficients or the
different thresholds, were physical entities which could be inferred from the
physiographic characteristics of the catchments. Due to the need to obviate a
time-consuming trial and error approach in parameterising these models, model
parameter optimisation was introduced (Dawdy and O’Donnell, 1965). As a result,
when the estimates were made on the basis of objective functions to be
minimised (for example, the sum of squares criterion), the resulting parameter
values were generally unrealistic, perhaps because they incorporated errors of

measurements as well as those of the model itself.
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Also, the conditions of observability (the need for sufficient information content
in the data to determine the parameter values) were not always guaranteed,
particularly for multiple input—output hydrological models (Gupta and
Sorooshian, 1983; Sorooshian and Gupta, 1983; Singh and Woolhiser, 2002). In

essence, these models became data-driven.
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At the end of the 1970s, a new type of lumped models was introduced, based
on the idea that the rainfall runoff process is mainly dominated by the
dynamics of saturated areas, which can be related to the soil moisture storage
using a simple monotone function, thus leading to the variable contributing
area models. These models generally employed the Dunne assumption that all
precipitation enters the soil and that surface runoff originates by saturation of the
upper soil layer. These variable contributing area models, the Xinanjiang
(Zhao, 1977) and the Probability Distribution (PDM) (Moore and Clarke,
1981) were characterised by few significant parameters: although expressing the

physical concepts of continuity of mass they were still not entirely meaningful



in their dynamics. Thereafter, Juemou et al. (1987) combined the Xinanjiang
soil moisture distribution function with the Constrained Linear Systems (CLS)
model (Natale and Todini, 1976a,b; Todini and Wallis, 1977; Todini, 2002b) into
the Synthesized Constrained Linear Systems model (SCLS). Later, by
modifying the Xinanjiang soil moisture distribution function, Todini
(1996, 2002a) developed the ARNO model, from which Wood et al. (1992)
derived the VIC model by increasing the number of soil layers (Liang et al.,
1994, 1996a,b). The core of all these models is a two parameter distribution
function curve representing the relation between the total volume of water
stored in the soil and the extension of the saturated areas. Unfortunately, the
parameterisation of this curve, as well as of the other processes represented
(drainage, percolation, groundwater flow, etc), was based on empirical
parameters to be estimated from the data. Beven and Kirkby (1979)
originated a more physically-meaningful distribution function model,
TOPMODEL, based on the distribution function of a topographic index.
This assumes that the accumulation of soil moisture can be approximated
by successive steady states of the water table originating in the upper soil layer.
They derived a new relation between the volume of water stored in the soil and
the extent of saturated areas (the topographic index distribution function) on the
basis of physically-meaningful parameters. Unfortunately this proved to be
true only for very small hill-slope catchments represented with

extremely fine meshes (Franchini et al., 1996).
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In a further step towards a physical representation of the rainfall-runoff
process, Wooding (1965a,b, 1966), and Woolhiser and Liggett (1967) used
kinematic models for the study of small urban basins, while Freeze and Harlan
(1969) proposed, albeit only as a future project, the creation of a mathematical
model based on distributed physical knowledge of surface and subsurface
phenomena. By numerical integration of the coupled sub-systems of partial
differential equations describing surface flow and flow in the unsaturated and
saturated zones, and by matching the solutions of each sub-system with the
boundary conditions of another, catchment scale predictions could be produced.
This concept was developed into SHE (Systeme Hydrologique Européen),
by the Danish Hydraulic Institute (DK), the Institute of Hydrology at
Wallingford (UK) and SOGREAH (France) (Abbott et al., 1986a,b). SHE has
since evolved into a robust physically-based model, available as MIKE-SHE
(Refsgaard and Storm, 1995) and SHETRAN (Ewen et al., 2000). The limitation
to its practical use is the large requirement for data and computational time

which restrict its use to small, extensively instrumented catchments.
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More recently, the wider availability of distributed information, ranging
from soil types and land use to radar rainfall, have facilitated the production
of simplified

physically-meaningful distributed hydrological models. These models, based
on simplifying assumptions, with simpler and more parsimonious
parameterisations than those employed in MIKE-SHE and SHETRAN, can be
applied successfully to flood forecasting. Such models are: WATFLOOD
(Kouwen, 2000), DHSVM (Wigmosta et al., 1994), TOPKAPI (Todini, 1995;
Todini and Ciarapica, 2002; Liu and Todini, 2002), FEWS NET Stream
flow Model (Verdin and Klaver, 2002), LISFLOOD (De Roo et al., 1998, 2000)
and tRIBS (Vivoni, 2003).
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The Sherman (1932) UH, the starting point for data-driven models, was
expressed in discrete form by Box and Jenkins (1970), who showed the link
between the Transfer Function models and the Auto-Regressive with Exogenous
variables models (ARX). Following this idea, Todini (1978) used the UH in the
form of an Auto-Regressive Moving-Average with Exogenous variables models
(ARMAX) for the reduction of model parameters in a Kalman Filter based real-
time flood forecasting system. This Box and Jenkins type modelling introduced
a loss of ‘physicality’ in the models, for instance when using the integration to
eliminate cyclo-stationarities in data, with the loss of the possibility of
preserving the mass balance or Intervention Analysis models, in favour of more
mathematically oriented approaches. Later, system engineering approaches,
including various types of input— output techniques, were applied in
developing better performing and more parsimonious models to represent the
Hydrological catchment modelling: past, present and future hydrological
behaviour of a catchment, although with a larger loss of physical interpretation.
This loss of physicality increased further with Artificial Neural Network
(ANN) approaches, which can be viewed as non-linear analogues of the original
linear transfer function models; unfortunately, forecasts may be poor when the
events are larger than those in the training set (Cameron et al., 2002, Gaume and
Gosset, 2003). Although Dawson and Wilby (2001) and Shamseldin (1997)
review applications of ANN to rainfall-runoff modelling, few operational
forecasting systems are presently based on ANN (Garcia-Bartual, 2002); as
already noted, outside the range of the training set, the ANN may be less robust
and may sometimes diverge (Gaume and Gosset, 2003). More recently, a
Data Based Mechanistic (DBM)

modelling approach, introduced by Young (2002), derived the model structure
and the parameter values from the input and output data using system engineering
identification and parameter estimation techniques that attempted to go beyond the
black-box concept by selecting those (not necessarily linear) model structures
that are considered physically meaningful (Young, 2001, 2002). Although
the DBM modelling approach recognises the importance of the physical
coherence of the identified model structure, it derives it from the
observations, thus disregarding de facto the results of at least 50 years of
research efforts aimed at specifying the physical hydrological mechanisms
that generate floods. This contrasts with the Bayes principle which would

combine the observations with all possible a priori knowledge on the hydrological



processes and possibly on the parameter values to obtain less uncertain a posteriori

forecasts
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THE NEED TO RECONCILE THE TWO APPROACHES

Unfortunately, hydrological modellers emphasise the merits of their own
approaches while disregarding those of others. In particular, physical process-
oriented modellers have no confidence in the capabilities of data-driven models’
outputs with their heavy dependence on training sets, while the more system
engineering-oriented modellers claim that data- driven models produce
better forecasts than complex physically-based models. Implicit in this
controversy is the basic question: should 50 years of research by scientists
seeking better representations of hydrological processes be jettisoned?

In this new century, there is the need, for the sake of hydrology as a
science, to reconcile the two streams of thought by (a) combining the
advantages of both approaches (Klemes, 1983) and (b) designing extensive
benchmarks or test beds, to determine the role, validity and fields of
application of the different models Krzysztofowicz (1999) has already proposed
estimating the predictive probability by combining a generic model of unknown
nature — but presumably physically-meaningful — with an autoregressive
model by means of a Bayesian approach. Recent experiments have shown that
the resulting Bayesian processor works well over a short forecasting horizon
when the autoregressive model output is highly correlated with the
observations, but it decays rapidly as soon as the required length of the
forecasting horizon becomes larger; moreover, when dealing with water stages
or with discharges, the autoregessive model is successful in the recession but
less so in the rising limb of the hydrograph. Therefore, to reconcile the
different approaches, as an improved alternative to the Krzysztofowicz approach,
the Bayesian processor could be used to combine a

physically-based to a data driven model. This approach would in fact benefit

from the robustness of the former and the adaptability of the latter.
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At the same time, appropriate benchmarks or test beds might be made freely
available for modellers to assess, objectively, the qualities of their models as
well as their limitations and the possible fields of application. The task is not
simple but, once problems have been characterised, along with high quality
data sets from appropriate catchments, a set of test cases, reflecting the
various fields of application, could be devised. Thus, models could then be
tested on the benchmarks or test beds, and quality assurance certificates

could be issued.
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Uncertainty in models and parameters

Uncertainty plays an increasing role in modelling and forecasting but has
yet to reach a consensus among hydrologists, partly due to the statistical
complexity and also because end users have no clear ideas on the use of the

relevant information.
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To provide a logical introduction to the discussion below, the reader is provided
with a simple representation of certainty and uncertainty. For a line fro
— %o+ 9 full knowledge or certainty can be represented by a Dirac delta
over a specific real number. For instance the certainty that the value of a given
quantity x is 3, can be represented by O3 At the same time,total uncertainty

can be represented mathematically by a uniform distribution between — *“and

T Ppe represented by a probability density, which will tend to be more and
more peaky, as a function of the increasing knowledge level, around the
imperfectly known quantity (here x = 3) and, in the limit, when all the

necessary information is acquired, it may converge onto the Dirac delta,for

instance * 7.
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Therefore, either a quantity is known perfectly and probabilistic concepts
need not be invoked, or a quantity is not known perfectly and the most
comprehensive information available is either its probability density function
(pdf) or its integral, the Probability Distribution Function (PDF). This point
must be clear when dealing with uncertainty in mathematical models based
on a number of model parameters. In this case, either the model parameter
values are known perfectly, in the sense that they do not need to be estimated
because they are known on physical grounds (or it is believed so), or
alternatively, if we are not sure and they are uncertain, we must not estimate
ONLY their expected values but rather try to obtain their entire pdf, because

the pdf is the information necessary for dealing with uncertain quantities.
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When dealing with uncertainty, the issues to be clarified are:

1. How is predictive uncertainty defined and how is it derived?

2. Can the conditional predictive uncertainty be used instead of the
unconditional?

3. What is the implication of using model uncertainty, as in the ‘ensemble
forecasts’ instead of predictive uncertainty?

4. What is the implication of focussing on parameter estimation and
estimation of their uncertainty, as opposed to prediction and the estimation
of predictive uncertainty?

5. Should formal Bayesian inference be used or less formal

6. What is the benefit of using predictive probability in operational decision

making?
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e PREDICTIVE UNCERTAINTY

e In clarifying to hydrologists the real meaning of predictive uncertainty,
Krzysztofowicz (1999), points out that “Rational decision making (for flood
warning, navigation, or reservoir systems) requires that the total uncertainty about a
hydrologic predictand (such as river stage, discharge, or runoff volume) be
quantified in terms of a probability distribution, conditional on all available
information and knowledge.” and that “Hydrologic knowledge is typically embodied

in a deterministic catchment model”.
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These statements underline two aspects usually not clearly understood by
hydrologists. The first is that the objective of forecasting is to describe the
uncertainty of actual future values of water stage, discharge, runoff volume, etc.
rather than the uncertainty of predictions generated by the hydrological
forecasting models. The second is that this uncertainty, generally expressed in
terms of a probability density (or probability distribution) function, is ‘conditional’
upon the forecasting model prediction, which is now seen as the available,

although uncertain, knowledge of the future. In other words, the forecasting



model prediction is now a function in the decision making process and not the

provider of deterministic (and therefore ‘certain’) future levels, flows, etc

S cnl Jsl s (oo GLiS 1) Conl 005 S50 b Cenafolg onp Loy Blad jsb 4 a5 coge dm 99 (DL ()l
Ol Cagnlad pas & el DUl > g (90 ‘;ﬂ 3 o..\.:.ﬂ Gy_'élj polie Cosdnd soe Caiog USSR I KV
S 5l (IS ysb a5 ol pas (0l &5 (nl 090 (Sielg e (S i sl oo b ond sl o i
4 ojgpel a5 Sl (i Gl e G Ui p borie w9d (e Ole (Sl @ig DLl (JBs &b
PUDUPS SUCH It SRS PV VPSSP VPSS TP SURP I Dr-IP VR Y CSVA Bt SOFSN PR [t KTCTIPWS

] o&.l.gj sl b > )‘&E5C9-l°~4 oaisS &l gl (g0 03 S S

To clarify these aspects, let us introduce the concept of the joint probability
distribution of the real quantity of interest y, the predictand (namely the

discharge, the water level in a specific cross section, etc.), and the model forecast

Unless the model is so exceptionally accurate, thus perfectly matching the

observations, a scatter will always be observed in the y - y” plane as in Fig. 1.

This scatter is a representation of the joint sample frequency of y and Y that

can be used to estimate the joint probability density.
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For any given model, the model forecast Ve , where t is time, is a function of a

specific value P of the parameter set and of the input forcing Xy (the

covariate); thus the joint probability density can be expressed as in Eqn.(1):

b (5)x..8) (1)




which, for the sake of clarity, is written in a more explicit way than in the
v,
classical statistical notation, by explicitly writing the model output

conditional on the covariate and the parameters.
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Fig. 1. Joint '¥ ‘.‘T'sample frequency from which a joint probability density

can be estimated. The conditional density of y given > is then obtained by

cutting the joint density for the given a value of > , namely ' , and re-

normalising it as for Eqn. (2).
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If there is no scatter and * * ! * then and only then can ~ * be used as a

H
forecast of ) . In all the other, more generally occurring, cases where there is
F .-}
inherent uncertainty, the conditional probability of i given Ve must be derived

in order to predict Vi . This is easily done by cutting for a given Vi the
previously mentioned joint probability density (Fig.1) and renormalizing it,wich

can be formalized as:

x.9))

X, . @Ddy
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It is important that the reader understands that the conditional uncertainty
given in Eqn. (2) expresses the predictive uncertainty of a given model under
a given input forcing and a given set of parameter values. This has
nothing to do with the uncertainty induced by the model choice, and/or by the
parameter values and/or by the input and output measurement errors. If it is
believed that these additional uncertainties may strongly affect the forecast and
its uncertainty, then they have to be assessed and marginalised out.
Following the Bayesian approach, all the previously mentioned additional
uncertainty (namely model, parameters and measurements) is concentrated in a
number of ‘dummy’ parameters, the uncertainty of which is described via a

posterior probability density and successively marginalised out.
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This can also be written in a more explicit way, as:

|G 1. x,))= [ 70,

=

(5,]x,.9)) g9y, x,) a9
(4)

where the predictand ty is explicitly written conditionally

the covariate and the parameters. In Eqns. (3) and (4):

f(}'r |.Tr J X, ) or

‘f(']}’|(}.?|x?'}:f'x”]] is the probability density of the predictand
conditional upon the historical observations and the covariate after

marginalizing the uncertainty due to the parameters.
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n is the set of historical covariates (for instance water levels,discharges,etc.)

and n is the record lenhth;

X n is the set of historical covariates (for instance rainfall, upstream inflows,

etc.)
At Is the predictand value of interest

P 1s the corresponding value of the covariate

Is a given parameter vector

v lx.. 9) or

®  Is the ensemble of all possible parameter realizations

f (‘p—‘r|(}’r|3£'!.3” Is the probability density of the predicatand value of
interest conditional upon the covariate and a generic set of parameters g
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Equation (4) shows that, when all the different (model, parameters and
measurements) uncertainties are account for, the predictive uncertainty is obtained
by marginalising our dummy parameters effect from the conditional probability

density expressed by Eqn. (2). Therefore, the posterior probability density



'9|KI'X-'?), can be derived by

for the parameter vector %, namely -E(
means of a Bayesian inferential process (see Mantovan and Todini, 2006)
and plays an essential role in the derivation of the predictive uncertainty. The

Bayesian inference process allows this posterior probability density to be

derived from the historical observations * " starting from a prior density
expressing our subjective knowledge about the parameters. The posterior

density is used to marginalise out the conditionality on the parameters; this involves

integrating over E-', the entire domain of existence of the parameters, its product

f:(}’, G” |I’ ’ 3)] of the

with the conditional probability density function

. ¥ .. .
predictand ~ ! conditioned on the covariate xt and the parameter vector g

that identifies the specific model.
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Equation (1) is then the basis for deriving the predictive probability density

i
for the r observation, and can be used to describe the predictive uncertainty

both in hindcast mode, whent<n,andin forecast mode fort>n.
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The predictive uncertainty expressed by Eqn. (4) is unconditional on the
parameters, since parameter uncertainty has been integrated out. This means that,
following Eqn. (4), to estimate the most likely outcome (the expected value of
the predictand) one has to take into account and use all possible model
predictions (namely one per parameter vector realisation) and not only the one
relevant to the most likely parameter values, and all the predictions have then
to be averaged using the derived posterior probability function to marginalise
out all the uncertainty which is now encapsulated in the model parameters

(De Finetti, 1975).
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Therefore, in dealing with the derivation of the unconditional
predictive probability, which is one of the main scopes of predictive
modelling (and in particular of hydrological modelling), the estimation of the
parameter values is not the main goal, since the full predictive
uncertainty information about the parameters will be incorporated in the

derived posterior probability density of the parameters, given the observations.
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Hence, the essential steps in evaluating the predictive uncertainty using a

Bayesian inferential approach are to:



a) define a subjective prior density for the parameters;

b) assume an appropriate likelihood for the parameters, namely a probability
density of the observations given the parameters coherent with the Bayes
theorem (Mantovan and Todini, 2006);

c) derive a pdf for the parameters from the observations (the posterior density);
d) compute the probability density of the predictand conditional on the
parameters; and

e) marginalise the parameter uncertainty by integrating, over the parameter
space, the derived parameters posterior pdf times the probability density

of the predictand conditional upon the parameters.
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The above explanation has addressed Issue 1; Issue 2 is now addressed.
When dealing with modelling and prediction, it is common practice to
estimate a ‘best set’ of parameter values to make predictions and forecasts
(Sorooshian and Gupta, 1983; Thiemann et al., 2001; Vrugt

et al., 2003).
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In this case the estimated predictive uncertainty is referred to as ‘conditional upon

the parameters’ and can be expressed as:

f (:v =f (}

x,. .97, X])J (5)

where:

g represents the given parameter values which can be estimated as expected
values, as maximum likelihood (ML) estimates, as modal values, as trial and error
estimates, etc. or just simply assigned on the basis of physical

considerations.
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It should be noted that, unless the relation between the parameters and the
predictand is linear, the conditional probability density derived from Eqn. (5)
will not coincide with that given by Eqn. (4). Therefore, this approach may lead
to less robust predictions and uncertainty estimates and its use should be
justified either by a need for less computationally demanding approaches,
such as in the case of real-time flood forecasting (as in Krzysztofowicz, 1999), or
by proving that the distortion generated by disregarding the parameter uncertainty
(which may result from a relatively small variability of the parameter values or
by weak non- linear structures in the hydrological model) does not
seriously affect the predictive probabilities. Following the example in Liu et al.
(2005), Fig. 2 shows how in the case of the River Xixian, the difference between

the unconditional predictive probability distribution function, computed by
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Fig. 2. Cumulative predictive probabilities estimated at various points in
time. The solid line represent the unconditional (Eqn. (4)) while the dashed

line represents the conditional (Eqn. (5)).

marginalising the 50 000 distributions obtained per each set of parameters (solid
line) does not differ too much from the conditional (dashed line) obtained
using the maximum likelihood parameter value estimates. This may happen
either when the forecast is linearly or quasi-linearly related to the parameters,
or when the forecast is relatively insensitive to the parameter variation
around the estimated value, or, alternatively, the variance of the parameters is
small. Therefore, this second and less formal approach may be acceptable in

certain circumstances.
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Issue 3 is now addressed which relates to a tendency among hydrologists and

meteorologists to confuse predictive uncertainty with model uncertainty

(Stephenson et al., 2005). Model uncertainty is either expressed in the form of

an ensemble of forecasts by varying model parameters as well as the initial and

boundary conditions or by mimicking the predictive probability estimation,

using an equation similar to Eqn. (6):

(7,

x,.Y,.X,)=gl9lr,.x,)

(6)
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Clearly the density of Eqn. (6) differs from that represented by Eqns. (4) and (5)
since it does not include the conditional density of the predictand, given the
model forecast, as expressed by Eqn. (2) and therefore has nothing to do with

the definition of predictive probability.
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Although the use of ‘ensemble forecasts’ to represent the predictive uncertainty
has been increasingly proposed by meteorologists, it is not difficult to show,
particularly when the members of the ensemble are used to produce flood
forecasts, that very rarely will the measured value of the predictand lie
between the 0.05 and the 0.95 probability bounds derived from the ensemble.
Figure 3 compares the observed flow (thick solid line) in the Po river in Italy at
the gauging station of Ponte Becca (~35 000 km2) with the modelled one
using the actually measured rain over the catchment (dashed line) and the
forecasts obtained using all the ensemble members (thin lines). Both the
observed flows and the ones modelled using the measured rainfall are most of
the time completely outside the uncertainty band described by the ensemble

members.
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As previously mentioned, many hydrologists also make the mistake of not
including the conditional probability expressed by Eqn. (2) in the computation
of the predictive uncertainty. This confusion also occurs in many GLUE
papers where the predictive probability is defined as the cumulative
probability deriving from Eqn. (6) instead of from Eqn. (4). To clarify this

point, a few lines of the Beven and Freer (2001) paper are reproduced here.
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“Given a large enough sample of Monte Carlo simulations, the range of
likelihood weighted predictions may be evaluated to obtain prediction

quantiles at any time step. This is most easily done if the likelihood values

Zf,_L[iJ[E}J] =1, where M(©,) now

are renormalized such as
indicates the ith behavioural Monte Carlo sample, so that

at any time step t

Pz, <2)=>"7 L|m(e, |2, < zJ 7

i

M(®,).”

where Z:.i' is the value of variable z at time t by model ~

Noting that, in the Beven and Freer (2001) paper, the notations Z:r s L, are

equivalent to Ver Wi used in the the quantiles essentially relate to the ‘model’

predicted variable Z r, not to the possible true value Z, conditional on the

predicted value Z? as a correct definition of predictive

P[Zr <z Z}

) " definition is that decisions must be

2006) implies, namely

taken on the basis of what will possibly happen, not on what the model is



predicting: the model is not the reality, it is only a tool to reduce uncertainty on
future outcomes, by conditioning the predictand uncertainty on the model
forecast. Therefore, in the rest of this paper the predictive probability used will

be that given by Eqn. (4).
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Fig. 3. Up to 10 days flow forecasts in the Po river in Italy at the gauging
station of Ponte Becca (~35 000 km2). Observed flow (thick solid line);
modelled flow using observed rainfall (dashed line); forecasts obtained using

all the ensemble members (thin lines).
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EQUIFINALITY VS INEQUIFINALITY

Beven and Binley (1992) introduced the concept that alternative models
(generally the same hydrological model with different values of the parameters)
may have the same predictive value, which was subsequently formalised as
‘equifinality’. The equifinality principle reflects, up to a certain point, the
concepts expressed above where a distinction was made between a prediction
based on a unique set of parameters, and that derived by assuming a prior range
within which the parameters may vary and deriving the posterior parameter
density from the observations. In principle, when dealing with non-linear
models, the typical hydrological modelling with fixed parameter values may
lead to large predictive biases and to an incorrect evaluation of the predictive
uncertainty. If uncertain parameters are assumed in accounting for the
presence of uncertainties, then, after expressing Eqn. (4) in discrete form, an

ensemble of model predictions (one for each parameter vector realisation)



must be averaged with the derived posterior parameter probability mass (the
marginalisation) which will reflect the knowledge gained from the
observations (the Bayesian learning process). Therefore, the objective of any
Bayesian inference process is to obtain peakier posterior parameter densities
from the observations, to reach ‘inequifinality’, namely that some models
(linked to some of the parameter vector values) and their predictions are more

likely than others (Mantovan and Todini, 2006).
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The GLUE approach proposed by Beven and Binley (1992) uses Eqn. (7)
rather than Eqn. (4), resulting in extremely ‘flat’ posterior probability
distributions and unrealistically wide predictive uncertainties; by contrast, the
application of Bayesian inference leads to peakier posterior densities and smaller

predictive uncertainties.



aoi a5 WS e oolind B alsles gl> 4 ¥ aloles 51 (V38Y) Lol 5 (y0 Lawss o syt GLUE oS,

P ST o e sl Subad pae 5 (Gl A S e slo S 4 2 (nj Blaiul 005 (Se

O

Although the Bayesian statisticians would prefer to start with informative priors
on the parameters (namely by using densities with a mode expressing prior
knowledge), the hypothesis of complete ‘equifinality’ may be accepted at the
outset of the Bayesian inference process, thus expressing the idea that all the
models, one per parameter vector realisation, have the same informative
value, due to prior lack of knowledge. This is why the real scope of the Bayesian
inference process should be associated with ‘inequifinality’, to produce peakier
posterior densities where some of the models are more likely to be correct than

others (Mantovan and Todini, 2006).
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PARAMETER ESTIMATION VERSUS PREDICTIVE UNCERTAINTY

This section addresses Issue 4. In the classical Bayesian approach, the
parameters of a model do not necessarily represent physically meaningful
quantities which have true (albeit unknown) values, but rather temporary
‘dummy’, ‘convenient’ or ‘nuisance’ quantities of uncertain nature, over which all
uncertainty in the model, observations, boundary conditions, etc. is
projected, to be marginalised out by their ‘posterior probability density’,
obtained from observations via the Bayesian inference process (De Finetti, 1975,
Chapters 11 and 12). Therefore, it is necessary to clarify the objective of
this uncertainty assessment: Is ‘parameter estimation’ the main objective,

or is it ‘prediction’?
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If the objective is ‘parameter estimation’, it is assumed, implicitly, that the
parameters have a true, albeit unknown, value to be found. Note that now the
scope is not to identify dummy values for the parameters aiming at estimating
the predictive density, but rather to determine the true, physically meaningful
parameter values. In this case, if the observability conditions (Gelb, 1974)
are met and if all the uncertainties in the model, the input, the output, etc. can be
reflected, fully and correctly, in an appropriate likelihood function (which is not
easy), only then will it be possible to estimate physically meaningful
parameter values after deriving the posterior parameter probability density
function (which coincides with the likelihood function if one takes the uniform
as the a priori on the parameters), either using an ML approach or as an
expected value. This is an extremely complex problem that in real cases can
rarely be solved to produce physically meaningful parameter values. The
alternative ‘prediction’ problem is less complex and more feasible because, in
the Bayesian approach, the estimation of the ‘true’ parameter values is not
required; it is rather their entire ‘posterior probability density’ that expresses
their uncertainty after sampling the observations. This posterior density may not
be that associated with the ‘true’ value of the parameters, since in Bayesian
inference the parameters become ‘convenient’ quantities, used to absorb and
reflect all the sources of uncertainty; these are finally marginalised out at the
end of the process. It is true that, if the different types of uncertainties, such as
input and output uncertainties, model structural uncertainties, parameter
uncertainties, etc. can be defined and described through pdfs, this could be

beneficial, in the sense that they could then be marginalised out to obtain the



predictive uncertainty, but as mentioned earlier, this is not essential when the

aim is specifically ‘predictive uncertainty’.
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LESS FORMAL LIKELIHOODS AS AN ALTERNATIVE

The point raised by Beven and Binley (1992), who advocated the use of
less formal likelihoods to represent the likelihood of parameters when dealing
with complex models and several types of errors (input, output, model,
parameters, etc.) showing non-normal or asymmetrical densities, correlation
and heteroscedasticity, is good. This descends from the fact that to be
successful, a Bayesian inference process requires stringent assumptions on

the shape of the probability density of errors, which is difficult to define



correctly in the case of complex hydrological models. Unfortunately the
proposed solution, GLUE, is based on a number of non-formal likelihoods
that do not satisfy Bayes theorem and which lead to incoherent and
paradoxical Bayesian inferential properties with a reduced capability of
extracting information from the observations, and a consequent over-estimation

of predictive uncertainty (Mantovan and Todini, 2006).
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Presently, research aims, on the one hand, at finding coherent less formal
likelihoods and, on the other hand, to transform the errors in ‘convenient’ spaces,
where formal Bayesian inference can be used to demonstrate the
robustness of the derived approaches with respect to their complexity and
different typologies of errors. Liu et al., (2006), have recently used the Normal
Quantile Transfom (NQT) (Van der Waerden, 1952, 1953a,b) to convert
discharge observations and model predictions into a multivariate normal
space where the Bayesian approach could be applied successfully. Recently,
using the a,b,c model, an extremely simplified hydrological model
introduced by Fiering (1967) for didactic purposes, both GLUE- and NQT-
based Bayesian inference were applied to synthetic data with complex
asymmetric, heteroscedastic and time correlated errors, to describe the
improvement obtainable—in terms of predictive uncertainty—from the prior

uncertainty expressed by a multi-uniform distribution on the parameters. Figure



4 compares the results that can be obtained; they will be described more
completely in a forthcoming paper with Mantovan and Martina. Figure 4(a)
shows the expected value, the 0.05 and the 0.95 quantiles deriving from the
discretisation of Eqn. (8):
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prior density on the parameters; this represents the prior predictive

written in discretised form, where represents the multi-uniform
uncertainty before Bayes theorem and the NQT have been applied to derive
the posterior pdf of the parameters. Figure 4(c) displays the expected value,
the 0.05 and the 0.95 quantiles obtained from Eqn. (4) in discretised form (i.e.
using the posterior density of the parameters), while Fig. 4(b) reproduces the
0.05, the 0.5 (not the expected value, since this is how GLUE results are typically
shown) and the 0.95 quantiles obtained using the GLUE approach. It is interesting

to see that, while the formal Bayesian inference approach applied to the NQT



transformed data, which does not require assumptions on the probability
distribution of errors in deriving the posterior pdf of the parameters, largely
reduces the prior predictive uncertainty expressed by Eqn. (4), GLUE reduces it
much less and in places, for instance around the peaks at the 120 and the 160
time steps, the posterior predictive uncertainty appears to be larger than the a
priori uncertainty. Therefore, in response to Issue 5, it appears that formal

Bayesian inference should be employed in preference to GLUE.
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One of the issues that presently enriches the debate about uncertainty among
hydrologists is how to show the benefits arising from the operational use of
predictive uncertainty, a corollary of which is how to communicate uncertainty
to the end-users, namely the decision-makers. Indeed, the end- users such as
water managers, emergency managers, etc. have difficulty in perceiving the
benefits arising from the operational use of predictive uncertainty. What is
certain is that hydrologists must not make statements such as: “the probability
of flooding in the next 12 hours is 67.5%”. This is meaningless to an end-user.
What he/she would like to hear is the answer to the basic question: “what are
the expected benefits and drawbacks of issuing a flood alert for the next 12

hours?”. Therefore, hydrologists must define, in dialogue with end-users,



subjective utility functions, which can be used to compute the expected

benefits or the
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Fig. 4. Comparison of predictive uncertainty estimates. (a) expected value,
0.05 and 0.95 quantiles obtained using the prior parameter density by
discretising Eqn. (8); (b) 0.05, 0.50, 0.95 quantiles obtained using the GLUE
approach; (c) expected value, 0.05 and 0.95 quantiles obtained using the
posterior parameter density obtained via the NQT transform and Bayesian

inference by discretising Eqn. (4)

expected damages contingent on the predictive density of the quantity of

interest.
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A schematic example of such utility functions is shown in Fig. 5, redrawn from
Martina et al. (2006), for the case of a flood alert (please note that in this
simple schematic example casualties are not taken into account). The dashed
line represents the end-user perception of damage (not necessarily the real

one) that will occur if the dykes are

subjective utility functions '
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Fig. 5. The utility functions deriving from a flood alert problem (Redrawn
from Martina et al., 2006). Solid line represents perceived cost and damage if
an alert is issued; dashed line represents perceived damage if alert is not

issued

overtopped, namely Q > Q* where Q* is the maximum discharge that may
safely flow in the river. The solid line represents the perception of cost plus
damages when an alert has been issued. As can be seen from Fig. 5, if an alert is
issued a cost must be inevitably incurred for mobilising civil protection agents,
alerting the population, laying sandbags, etc., but the damage in that case will
be smaller than in the previous case due to the raised awareness of the incoming
flood. The decision on whether or not to issue an alert will then descend from the
comparison of the ‘expected damage’ for the two options, obtained by integrating
the product of the cost function times the predictive uncertainty pdf over all
possible values of future discharge. It should be noted that the ‘expected
damages’ are a function of the actual future discharge that will happen, not of the
discharge predicted by the model. By using the expected value of damage
instead of the ‘model forecast’, the probability of false alarms as well as of
missed alarms should be much reduced, as the uncertainty about the future
discharge is taken into account. In addition, the peakier the predictive density
is, the more reliable will be the resulting decision, so that improvements in
forecasting, rather than looking for a better ‘deterministic’ forecast, must
essentially aim at reducing predictive uncertainty by whatever means are To
show how one can use predictive uncertainty in operation (Issue 6), the
Lake Como real-time management decision support system is considered here

as one of the few successful examples of the operational use of forecast



uncertainty (Todini, 1999). Lake Como is a natural lake in northern Italy closed
at its exit and managed as a multi- purpose lake for flood control, irrigation and
electric power production. Using a stochastic dynamic programming
approach, a standard operating rule was developed on a ten- day basis to
optimise long term irrigation and energy production. However, when a flood
is forecast, the reservoir manager would like to modify the standard operating
rule to deal with the incoming flood. To achieve this goal, a utility function
describing the damage perception of the manager was developed; every morning
an incoming flood forecast together with its predictive uncertainty, is issued
and an optimal release, computed by minimising the expected damage using
the inflow predictive uncertainty, is then proposed. Note that all this process
is totally hidden from the water manager who is aware only of the suggested

optimal release and of its expected consequences (Fig. 6).
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The performance of the system was assessed on the basis of a hindcast simulation
for the 15 year period January 1st, 1981 to December 31st, 1995; the results are
presented in Table 1. When applying the optimised rule, the lake level never
falls below the lower acceptable limit of —0.40 m, while historically this was
observed on 214 days. In terms of Como flooding, over the 15 years, the lake

level was



Table 1. Summary of results. A comparison between recorded water level
occurrences (historical) and the results of the operation rule based on the
forecasting uncertainty (optimised) for the period January Ist, 1981 to
December 31st, 1995

Water level No. of days
Historical Optimised
>—40 ¢m 214 0
=120 em 133 75
= 140 ecm 71 52
=173 em 35 34
Water deficit 890.27 10° m? 788.59 10° m®
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Fig. 6. The Lake Como operational decision support system. The system, on
the basis of the expected value of inflows to the lake (light blue line) and its
uncertainty (not shown on the screen, but used in the process) suggests to the
water manager the optimal release (green line)

which minimises the expected damage and shows the consequent expected

lake level (blue line) for the following 10 days



historically recorded to be above the lower flood limit of 1.20 m on 133 days,
whereas the optimised rule reduced it to 75 days. A noticeable reduction also
appears at higher lake levels: at 1.40 m, when the traffic must stop in the main
square of Como, the reduction is from 71 to 52 days and at 1.73, the legal
definition of ‘normal flood” when people can claim compensation for their damage,
the reduction is from 35 to 34 days. At the same time, the irrigation water deficit
decreases by an average of almost 100 x 106 m3 yr—1. This result is exceptional,
given that meeting irrigation demand implies higher lake levels, an objective

conflicting with the need to reduce the frequency of flooding.
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It is quite interesting how the system was accepted by the end-user. At the end
of 1997, the system was installed operationally and the Director of Consorzio
dell’ Adda, who is in charge of lake management, was invited to look at it but
not to use it until he had confidence in its effectiveness. After six months the
Director admitted that he had been beaten four to nil. Every time he took a
decision different from that suggested by the Decision Support System (DSS), he
was wrong. Ever since, the system has been in operation and used successfully; it
has produced not only a reduction in the number, frequency and magnitude of
Como flooding events, but also a 3% increase in energy production and a large

volume of extra water for irrigation.
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This example shows that, if appropriately briefed and involved, the end-users
will quickly become aware of the benefits arising from the use of predictive
uncertainty, provided they are not asked to interpret the forecasting in
statistical terms or the stochastic computation and optimisation

frequently required in problems in this type.
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It is the author’s personal belief that considerable effort is required to inform
the end-users of the improvements obtainable without burdening them with the
computational complexity. In this way, they can appreciate and receive the full

benefits of an approach aimed at improving the success of their decision-making.
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Conclusions and future perspectives

From the Rational Method to the distributed hydrological models presently
available, a vast evolution of conceptualisation and parameterisation of
hydrological processes has evolved in catchment models over several decades
of research. This effort in describing hydrological phenomena in physical terms
from the pixel to the catchment by the proponents of data-driven or data-
mechanistic models (the top-down approach) who do not require the derivation

of rigid model structures from the physical balance equations. Similarly,



the proponents of the physically meaningful models do not acknowledge the

merits of the data-driven approach.
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It is difficult to demonstrate the superiority of either approach but, although
recognising the merit of the data- driven models, a danger exists in broad
philosophical terms: namely, that all the work aimed at gaining a better physical
understanding of the runoff generation and routing processes and their
representation at different space and time scales can be dismissed as
unnecessary. Therefore, the hydrological research community would do well to
follow the advice of Klemes from over 20 years ago (Klemes, 1983) and combine
the advantages of both approaches while designing appropriate
benchmarks or test-beds to evaluate the roles and fields of application of the
different types of models. Furthermore, the recent introduction of the
‘equifinality’ principle, instead of leading to possible solutions, has
amplified the dissatisfaction with physically-based models because their
parameter uncertainty is deemed to be enormous. Again, in respect of
physically-based models, research hydrologists, with knowledgeable
statisticians, must agree on the principles of ‘predictive uncertainty’ and on the
counter-principle of ‘inequifinality’; they must construct formally correct
and less diffuse posterior parameter distribution functions to reflect the
quantity of data available as indeed they do for the data-driven models. These
can then be used to marginalise the parameter uncertainty to deliver
more appropriate measures of predictive uncertainty. Only by sharing the
framework for estimating predictive uncertainty for both data-driven and
physically-based models can benchmarks or test-beds be established to

determine their predictive merits and roles.
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Finally, water and emergency managers must be made aware of the potential
benefits of correct estimates of predictive uncertainty. For their part,
hydrologists must understand the actual problems of stakeholders rather than
retreating into a haze of equations and complex statistical and mathematical

representations.
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